Name: \qquad
Period: \qquad

Rotational Motion

Angular Quantities

θ (in rad)

Angular Displacement (Theta) - how much a circle turns or how much of an angle an object travels.

Example: A circle turns two revolutions. Find θ.
Solution: Since $2 \pi=360^{\circ}=1$ revolution.

$$
\theta=\frac{2 \mathrm{rek}}{1}\left(\frac{2 \pi}{1 \text { rek }}\right)=4 \pi
$$

ω (in rad $/ \mathbf{s}$)
$\omega=\Delta \theta / \mathrm{t}$

Angular Velocity (Omega) - how fast a circle turns or how fast an object moves through an angle

Example: A circle turns two revolutions in 4 secs. Find ω.
Solution: $2 \mathrm{rev}=4 \pi \mathrm{rad}=12.6 \mathrm{rad}$
$\omega=\frac{\theta}{\mathrm{t}}=\frac{12.6 \mathrm{rad}}{4 \mathrm{sec}}=3.14 \mathrm{rad} / \mathrm{sec}$

$$
\begin{gathered}
\alpha\left(\mathrm{rad} / \mathrm{s}^{2}\right) \\
\alpha=\Delta \omega / \mathrm{t}
\end{gathered}
$$

Angular Acceleration (Alpha) - how fast a circle speeds up or how fast an object accelerates around a circle.

Example: A circle starts at rest. After 2 sec, it is spinning at $12 \mathrm{rad} / \mathrm{sec}$. Find α.
Solution:

$$
\begin{gathered}
\alpha=\frac{\Delta \omega}{\mathrm{t}}=\frac{\omega_{\mathrm{f}}-\omega_{\mathrm{i}}}{\mathrm{t}}= \\
\frac{12 \mathrm{rad}-0 \mathrm{rad}}{2 \mathrm{sec}}=6 \mathrm{rad} / \mathrm{sec}^{2}
\end{gathered}
$$

Point A and B have the same angular displacement: $\theta_{A}=\theta_{B}$. Yet, since $r_{A}<r_{B,}$ point A travels a smaller arc length: $s_{A}<s_{B}$.

Point A and B have the same angular velocity: $\omega_{A}=\omega_{B}$ (they will take the same amount of time to turn the circle), but $v_{t A}<v_{t B}$.

A and B start at rest $(\omega i=0)$, and after a time (t) the circle is turning with an angular speed $\left(\omega_{f}\right)$ then they experienced the same angular acceleration: $\alpha_{A}=\alpha_{B}$, but B experiences a greater tangential acceleration: $a_{t B}>a_{t A}$

$$
\begin{gathered}
\text { Linear } \\
\Delta \mathrm{x}=\frac{1}{2}\left(v_{i}+v_{f}\right) \Delta t \\
v_{f}=v_{i}+a \Delta t \\
v_{f}^{2}=v_{i}^{2}+2 a \Delta \mathrm{x} \\
\Delta \mathrm{x}=v_{i}(\Delta t)+\frac{1}{2} a(\Delta t)^{2} \\
\Delta \mathrm{x}=v_{f}(\Delta t)-\frac{1}{2} a(\Delta t)^{2}
\end{gathered}
$$

Kinematic Equations

The rotational kinematic equations are exactly the same as their linear counterparts, using the following substitutions:

x becomes $\boldsymbol{\theta}$
 v becomes ω
 a becomes α

Tangential Quantities Radius does matter.

$$
\begin{gathered}
\mathbf{s}(\text { in } \mathbf{m}) \\
\mathbf{s}=\mathbf{r} \theta
\end{gathered}
$$

Arc Length - how much of a circumference an object travels.

Example: A circle turns two revolutions. Find s for an object .3 m from the center of the circle.
Solution: $\theta=2 \mathrm{rev}=4 \pi \mathrm{rad}=12.6 \mathrm{rad}$

$$
\mathrm{s}=\mathrm{r} \theta=.3(12.6)=3.78 \mathrm{~m}
$$

$$
\begin{gathered}
\mathbf{v}_{\mathrm{t}}(\text { in } \mathrm{m} / \mathrm{s}) \\
\mathbf{v}_{\mathrm{t}}=\mathbf{r} \omega
\end{gathered}
$$

Tangential Velocity - velocity at a radius. How fast something is moving straight ahead (like a car's speedometer while going around a track).

Example: A car is going $0.7 \mathrm{rad} / \mathrm{sec}$ around an 83 m radius track. Find v_{t}. Solution:

$$
\mathrm{v}_{\mathrm{t}}=\mathrm{r} \omega=(83)(0.7)=58.1 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{gathered}
a_{t}\left(\text { in } m / s^{2}\right) \\
a_{t}=r \alpha
\end{gathered}
$$

Tangential Acceleration - acceleration at a radius. How fast something is speeding up in straight ahead. A runner in the outside lane has to have more tangential acceleration to stay along a runner in the inside lane.

Example: Using the example at the left, find the tangential acceleration of a bug 0.35 m from the center of the circle.

Solution:
$a_{t}=r \alpha=(0.35)(6)=2.1 \mathrm{~m} / \mathrm{s}^{2}$

Rotational

$$
\begin{gathered}
\Delta \theta=\frac{1}{2}\left(\omega_{i}+\omega_{f}\right) \Delta t \\
\omega_{f}=\omega_{i}+\alpha \Delta t \\
\omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta \\
\Delta \theta=\omega_{i}(\Delta t)+\frac{1}{2} \alpha(\Delta t)^{2} \\
\Delta \theta=\omega_{f}(\Delta t)-\frac{1}{2} \alpha(\Delta t)^{2}
\end{gathered}
$$

Name: \qquad
Period: \qquad

The following two columns are designed to help you see the correlations between linear and rotational quantities and equations. Do the problems in number order to see the relationships.
10. A car travels 240 meters in 12 seconds. Find the velocity of the car.
11. A wheel rotates 2 revolutions in 3 seconds. Find the angular velocity of the wheel.
12. A car going $300 \mathrm{~m} / \mathrm{s}$ slows to $100 \mathrm{~m} / \mathrm{s}$ in 10 seconds. Find the acceleration of the car.
13. A wheel spinning $8 \mathrm{rad} / \mathrm{sec}$ slows to $2 \mathrm{rad} / \mathrm{sec}$ in 3 seconds. Find the angular acceleration of the wheel.
14. A car going $20 \mathrm{~m} / \mathrm{s}$ stops in 80 meters. How long did it take to stop?
15. A wheel turning $24 \mathrm{rad} / \mathrm{sec}$ stops in 6 radians. How long did it take to stop?
16. A box sliding down a hill going $3 \mathrm{~m} / \mathrm{s}$ accelerates at $2 \mathrm{~m} / \mathrm{s}^{2}$. How fast is going after 4 seconds?
17. A wheel turning $2 \mathrm{rad} / \mathrm{sec}$ accelerates at $3 \mathrm{rad} / \mathrm{sec}^{2}$. How fast is it spinning after 5 seconds?

1. Tangential Acceleration 2. Angular F Displacement 3. Tangential	A. How far an object moves along the edge of a circle. B. Rate at which speed changes that is radius dependent.	7. $\theta, \omega, \alpha, s, v_{t}$ or a_{t} A. Vt- $\mathrm{In} \mathrm{m} / \mathrm{s}$ D. \qquad $\partial_{t_{-}} \operatorname{In} m / s^{2}$ B. い \square In rad/sec E. \qquad In rad/ sec^{2} C. θ In rad \qquad F. \qquad In m G. Which ones are radius dependent? $s, v_{t}, \Rightarrow t$ H . Which ones are radius independent? θ, ω, α
4. Arc Length A 5. Angular E Acceleration 6. Angular Velocity	radius. D. Rate at which a circle tums. E. Rate at which a circle changes speed. F. How much of a circle an object moves.	8. A) Convert 3 revolutions to radians. $\left(\frac{3 r e v}{1}\right)\left(\frac{2 \pi d}{1 r e v}\right)=6+1 r a d=18.84 \mathrm{rad}$ B) Convert $20 \mathrm{rpm}(\mathrm{rev}$ per min) to $\mathrm{rad} / \mathrm{sec}$. $\begin{aligned} \frac{20 r \operatorname{cov}}{1 \min }\left(\frac{\ln i n}{60 \sec }\right)\left(\frac{2 \pi}{1 r e v}\right)= & 66 \pi \mathrm{red} / \mathrm{sec} \\ = & 207 \mathrm{red} / \mathrm{sec} \end{aligned}$
9. Use the graphic following. Pos S (same or both) A) \qquad Greate B) \qquad Fastest C) \qquad If it com D) \qquad Travels E) \qquad Which F) 5 \qquad Which G) \qquad As it st H) \qquad ${ }^{-}$- Has the	of the rotating platform at the right to ans sible Answers: I (Inside wheels); O (outsid). t radius? tangential speed? mes to rest, which have the fastest α ? the least arc length? has the smallest radius? have the fastest angular speed? arts rotating, which has the slowest a_{t} ? slowest tangential speed?	the heels); A platform tuming clockwise, when viewed from above. I) \qquad Travels the greatest angular displacement? J) \qquad Has the slowest angular velocity? K) \qquad As it slows, which has the greatest a_{t} ? L) \qquad Travels the longest arc length?

The following two columns are designed to help you see the correlations between linear and rotational quantities and equations. Do the problems in mumber order to see the relationships.
10.A car travels 240 meters in 12 seconds. Find the velocity of the car.

$$
V=\frac{\Delta D}{T}=\frac{240 m}{12 \mathrm{sec}}=20 \mathrm{~m} / \mathrm{s}
$$

11. A wheel rotates 2 revolutions in 3 seconds. Find the angular

$$
\begin{aligned}
& \text { velocity of the wheel. } \\
& \frac{2 r v}{1}\left(\frac{2 \pi v d}{\operatorname{lve}}\right)=4 \pi r a d \quad \omega=\frac{\Delta \theta}{t}=\frac{4 \pi}{3}=4,2 r a d / s e d
\end{aligned}
$$

12. A car going $300 \mathrm{~m} / \mathrm{s}$ slows to $100 \mathrm{~m} / \mathrm{s}$ in 10 seconds. Find the acceleration of the car.

$$
\partial=\frac{\Delta v}{t}=\frac{v_{f}-v_{1}}{t}=\frac{100-30^{\circ}}{10}=-\frac{-200}{10}=-20 \mathrm{~m} / \mathrm{s}^{2}
$$

14. A car going $20 \mathrm{~m} / \mathrm{s}$ stops in 80 meters. How long did it take to stop?
$80=10 t$
$\Delta x=\frac{1}{2}\left(v_{i}+v_{F}\right) t \quad g \sec =t$
$80=\frac{1}{2}(20+0) t$
I)
J)
K) O
L) Travels the longest arc length?
