Name:

Period:

Rotational Motion

Radius doesn't matter.

Must use radians.

Angular Quantities

θ (in rad)

Angular Displacement (*Theta*) – how much a circle turns or how much of an angle an object travels.

Example: A circle turns two revolutions. Find θ . Solution: Since $2\pi = 360^\circ = 1$ revolution. $\theta = \frac{2 \operatorname{rev}}{1} \left(\frac{2\pi}{1 \operatorname{rev}} \right) = 4\pi$

 $\omega \text{ (in rad/s)} \\ \omega = \Delta \theta / t$

Angular Velocity (*Omega*) – how fast a circle turns or how fast an object moves through an angle

Example: A circle turns two revolutions in 4 secs. Find ω . Solution: 2 rev = 4π rad = 12.6 rad $\omega = \frac{\theta}{t} = \frac{12.6 \text{ rad}}{4 \text{ sec}} = 3.14 \text{ rad/sec}$

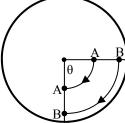
$$\alpha$$
 (rad/s²)
 $\alpha = \Delta \omega/t$

Angular Acceleration (Alpha) – how fast a circle speeds up or how fast an object accelerates around a circle.

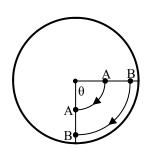
Example: A circle starts at rest. After 2 sec, it is spinning at 12 rad/sec. Find α . Solution: $\alpha = \frac{\Delta \omega}{t} = \frac{\omega_{f} - \omega_{i}}{t} = \frac{12 \text{ rad} - 0 \text{ rad}}{2 \text{ sec}} = 6 \text{ rad/sec}^{2}$

Linear

$$\Delta x = \frac{1}{2}(v_i + v_f)\Delta t$$


$$v_f = v_i + a\Delta t$$

$$v_f^2 = v_i^2 + 2a\Delta x$$


$$\Delta x = v_i(\Delta t) + \frac{1}{2}a(\Delta t)^2$$

$$\Delta x = v_f(\Delta t) - \frac{1}{2}a(\Delta t)^2$$

Point A and B have the same angular displacement: $\theta_A = \theta_B$. Yet, since $r_A < r_B$, point A travels a smaller arc length: $s_A < s_B$.

Point A and B have the same angular velocity: $\omega_A = \omega_B$ (they will take the same amount of time to turn the circle), but $v_{tA} < v_{tB}$.

A and B start at rest ($\omega i = 0$), and after a time (t) the circle is turning with an angular speed (ω_f) then they experienced the same angular acceleration: $a_A = a_B$, but B experiences a greater tangential acceleration: $a_{IB} > a_{IA}$.

Kinematic Equations

The rotational kinematic equations are exactly the same as their linear counterparts, using the following substitutions:

> x becomes θ v becomes ω a becomes α

Tangential Quantities

Radius does matter.

Arc Length – how much of a circumference an object travels.

Example: A circle turns two revolutions. Find s for an object .3 m from the center of the circle. **Solution**: $\theta = 2 rev = 4\pi rad = 12.6 rad$ s = r θ = .3(12.6) = 3.78m

$v_t (in m/s)$ $v_t = r\omega$

Tangential Velocity – velocity at a radius. How fast something is moving straight ahead (like a car's speedometer while going around a track).

Example: A car is going 0.7 rad/sec around an 83 m radius track. Find v_t. Solution: $v_t = r\omega = (83)(0.7) = 58.1 \text{ m/s}$

$$a_t (in m/s^2)$$

 $a_t = r\alpha$

Tangential Acceleration – acceleration at a radius. How fast something is speeding up in straight ahead. A runner in the outside lane has to have more tangential acceleration to stay along a runner in the inside lane.

Example: Using the example at the left, find the tangential acceleration of a bug 0.35 m from the center of the circle. *Solution*:

 $a_1 = r\alpha = (0.35)(6) = 2.1 \text{ m/s}^2$

Rotational

$$\Delta \theta = \frac{1}{2} (\omega_i + \omega_f) \Delta t$$
$$\omega_f = \omega_i + \alpha \Delta t$$
$$\omega_f^2 = \omega_i^2 + 2\alpha \Delta \theta$$
$$\Delta \theta = \omega_i (\Delta t) + \frac{1}{2} \alpha (\Delta t)^2$$
$$\Delta \theta = \omega_f (\Delta t) - \frac{1}{2} \alpha (\Delta t)^2$$

Name: _

Period:

eriod:		
 Tangential Acceleration Angular Displacement Tangential Velocity Arc Length Angular Acceleration Angular Velocity 	 A. How far an object moves along the edge of a circle. B. Rate at which speed changes that is radius dependent. C. How fast an object moves at a fixed radius. D. Rate at which a circle turns. E. Rate at which a circle changes speed. F. How much of a circle an object moves. 	7. $\theta, \omega, \alpha, s, v_t, \text{ or } a_t$ A In m/s D In m/s ² B In rad/sec E In rad/sec ² C In rad F In m G. Which ones are radius dependent? H. Which ones are radius independent? 8. A) Convert 3 revolutions to radians. B) Convert 20 rpm (rev per min) to rad/sec.
following . Po S (same or both A) Greate B) Fastes C) If it co D) Travel E) Which F) Which G) As it s H) Has th	, ,	
correlations betw	ween linear and rotational quantities and equa 40 meters in 12 seconds. Find the	<i>tions. Do the problems in number order to see the relationships.</i>11. A wheel rotates 2 revolutions in 3 seconds. Find the angular velocity of the wheel.
12. A car going 30 the acceleration	0 m/s slows to 100 m/s in 10 seconds. Find n of the car.	13. A wheel spinning 8 rad/sec slows to 2 rad/sec in3 seconds. Find the angular acceleration of the wheel.
14. A car going 20 to stop?	m/s stops in 80 meters. How long did it take	15. A wheel turning 24 rad/sec stops in 6 radians. How long did it take to stop?
	lown a hill going 3 m/s accelerates at ast is going after 4 seconds?	17. A wheel turning 2 rad/sec accelerates at 3 rad/sec ² . How fast is it spinning after 5 seconds?

1. Tangential B Acceleration	(How far an object moves along the edge of a circle.	7. $\theta, \omega, \alpha, s, v_t, \text{ or } a_t$ A. $\underbrace{\forall t \leq} \ln m/s$ D. $\underbrace{\neg t \leq} \ln m/s^2$ B. $\underline{\omega}$ In rad/secE. $\underline{\neg d}$ In rad/sec ²	
2. Angular F Displacement		Rate at which speed changes that is radius dependent.	C. $\underline{\partial}$ In rad F. $\underline{\mathcal{S}}$ In m G. Which ones are radius dependent? $\mathcal{S}_{\mathcal{V}} \mathcal{V}_{\mathcal{T}}, \overline{\partial}_{\mathcal{T}}$	
3. Tangential Velocity		How fast an object moves at a fixed radius.	H. Which ones are radius independent? $\theta_{j} \omega_{i} \ll$ 8. A) Convert 3 revolutions to radians.	
4. Arc Length A 5. Angular Ξ	D. 1	Rate at which a circle turns.	$\frac{3 rev}{1} \frac{2\pi rad}{1 rev} = 6\pi rad = (8.84 rad)$	
Acceleration	E. 1	Rate at which a circle changes speed.	B) Convert 20 rpm (rev per min) to rad/sec.	
6. Angular D Velocity	F.]	How much of a circle an object moves.	$\frac{20 \text{ rev}}{1 \text{ min}} \left(\frac{1 \text{ min}}{60 \text{ sec}} \right) \frac{217 \text{ rev}}{1 \text{ rev}} = \frac{.66 \text{ Trad/sec}}{= 2.07 \text{ rad/sec}}$	
	ssible . 1).	e rotating platform at the right to answer Answers: I (Inside wheels); O (outside w us?		
B) O Fastest tangential speed?				
C) \leq If it comes to rest, which have the fastest α ?A platform turning clockwise, when viewed fromD) \perp Travels the least arc length?A platform turning clockwise, when viewed from				
		ne smallest radius?	I) \leq Travels the greatest angular displacement?	
			J) \leq Has the slowest angular velocity?	
			K) \bigcirc As it slows, which has the greatest a_t ?	
H) $\underline{\mathcal{T}}$ Has the slowest tangential speed?			L) $\underline{\bigcirc}$ Travels the longest arc length?	
		umns are designed to help you see the near and rotational quantities and equa	tions. Do the problems in number order to see the relationships.	
10.A car travels 240 meters in 12 seconds. Find the velocity of the car. $V = \frac{\Delta D}{T} = \frac{Z40m}{12 \text{ sec}} = 20 \text{ m/s}$			11. A wheel rotates 2 revolutions in 3 seconds. Find the angular velocity of the wheel. $\frac{2rev}{1}\left(\frac{2\pi red}{ rev}\right) = \frac{4\pi red}{4\pi red} \qquad \qquad$	
12. A car going 300 m/s slows to 100 m/s in 10 seconds. Find the acceleration of the car. $\partial = \frac{\Delta V}{t} = \frac{V_F - V_F}{t} = \frac{100 - 300}{10} = \frac{-200}{10} = -20 \text{ m/s}^2$			13.A wheel spinning 8 rad/sec slows to 2 rad/sec in 3 seconds. Find the angular acceleration of the wheel. $\alpha = \frac{\omega_{c} - \omega_{1}}{p_{+}} = \frac{2 - \pi}{3} = \frac{-6}{5} = -7 \text{ m}^{-3}/_{5ec^{2}}$	
14.A car going 20 m/s stops in 80 meters. How long did it take to stop? $\Delta \chi = \frac{1}{2} (v_1 + v_r) t$ $g_{5ec} = t$ $g_{0} = \frac{1}{2} (20 + 0) t$			15.A wheel turning 24 rad/sec stops in 6 radians. How long did it take to stop? $A \partial = \frac{1}{2} (\omega_{c} + \omega_{i}) t$ $6 = \frac{1}{2} (0 + 24) t$ 0.55 = t	
$2 \text{ m/s}^2. \text{ How fa}$ $\bigvee_{\mathcal{L}} = \bigvee_{i}^2 + i$	nst is g ∋ t	hill going 3 m/s accelerates at oing after 4 seconds? $V_{\zeta} = 3 + \delta'$ $\rangle = m/s$	17. A wheel turning 2 rad/sec accelerates at 3 rad/sec ² . How fast is it spinning after 5 seconds? $\omega_{f} = \omega_{i}^{2} + \omega_{t}^{2}$ $\omega_{f} = Z + 3(5)$	
			$\omega_F = 2 + 15 = 7^{rad}/sec$	

Copyright © 2008, C. Stephen Murray