Kinematics: Describing Motion

Part I: Kinematics in One Dimension

Example Problem: Arrows shot vertically

$10 \mathrm{~m} / \mathrm{s} \mathrm{m}^{2}$

* A note concerning air resistance: air resistance is negligible unless otherwise noted.
- Rank the arrows in terms of their acceleration after they are released from their bows. If two or more are equal, circle them together

Greatest Acceleration ___ L__ Least Acceleration
Explain your answer:

- Now rank the arrows in terms of their maximum height reached after they are released from their bows. If two or more are equal, circle them together

> Greatest Height

Explain your answer:

Balls of equal mass are launched with different velocities and allowed to fall for 2 seconds. Arrange each of the following cases in order from greatest to least magnitude of displacement.
a. Ball thrown $5 \mathrm{~m} / \mathrm{s}$ straight up
b. Ball thrown $10 \mathrm{~m} / \mathrm{s}$ straight up
c. Ball dropped from a rest
d. Ball thrown $5 \mathrm{~m} / \mathrm{s}$ straight down
e. Ball thrown $10 \mathrm{~m} / \mathrm{s}$ straight down
f. Ball thrown $20 \mathrm{~m} / \mathrm{s}$ straight up

Greatest displacement ___________ Le___ Least displacement Explain your answer. Cite equations if necessary.

Now rank them in terms of greatest to least final velocities:

Greatest velocity ___________ Le___ Least velocity
Explain your answer. Cite equations if necessary.

$t(s)$

Questions to Ask Yourself

- Does the slope of this graph yield anything significant?
- Does the area of this graph yield anything significant?

Questions to Ask Yourself

- Does the slope of this graph yield anything significant?
- Does the area of this graph yield anything significant?

Example Problems: Motion Graphs

Another example...

- Describe the motion of the object in this graph.
- Which graph shows an object moving at the fastest velocity?
- What property of the graph tells you this?

- Translate the motion depicted in the position time graph into a velocity time graph.

Part II: Kinematics in Two Dimensions

Vector: Any quantity with a measurable magnitude and a direction.

- Vectors are often represented with arrows
- Length of the arrow indicates its magnitude
- Direction the arrow is pointed represents the direction of the vector quantity.

Example Problem: Resolving Vectors into Components
A projectile is launched at $35 \mathrm{~m} / \mathrm{s}$ at an angle of 50 degrees.

- First, draw a diagram with an arrow representing the vector quantity.
- Next, resolve the vector into x and y components.
- X Component: The portion of the vector running along the x axis.
- Y Component: The portion of the vector running along the y axis.
- Use trigonometric relationships to do this.

A very important principle to remember: X and Y components of motion are INDEPENDENT of one another!

Example Problem: Horizontally Launched Projectile
An object is launched horizontally from the edge of a cliff at $10 \mathrm{~m} / \mathrm{s}$. The object takes 4 s to land.

- Think of this in two SEPARATE dimensions
- Horizontally
- What is affecting the horizontal motion?
- Is the horizontal motion constant or accelerated?
- Vertical
- What is affecting the vertical motion?
- Is the vertical motion constant or accelerated?
- How far did the object fall vertically?
- How far from the base of the cliff did the object land?

