Kinematics: Describing Motion

Part I: Kinematics in One Dimension

Example Problem: Arrows shot vertically

* A note concerning air resistance: air resistance is negligible unless otherwise noted.

• Rank the arrows in terms of their acceleration after they are released from their bows. If two or more are equal, circle them together

Greatest Acceleration			Least Acceleration

Explain your answer:

• Now rank the arrows in terms of their maximum height reached after they are released from their bows. If two or more are equal, circle them together

Greatest Height			Least Height

Explain your answer:

Example Problem: Free Falling Objects

Balls of equal mass are launched with different velocities and allowed to fall for 2 seconds. Arrange each of the following cases in order from greatest to least magnitude of displacement.

- a. Ball thrown 5 m/s straight up
- b. Ball thrown 10 m/s straight up
- c. Ball dropped from a rest
- d. Ball thrown 5 m/s straight down
- e. Ball thrown 10 m/s straight down
- f. Ball thrown 20 m/s straight up

Least displacement

Now rank them in terms of greatest to least final velocities:

 Greatest velocity

 Least velocity

 Explain your answer. Cite equations if necessary.

Graphical Representations of Motion

Questions to Ask Yourself

- Does the slope of this graph yield anything significant?
- Does the area of this graph yield anything significant?

Questions to Ask Yourself

- Does the slope of this graph yield anything significant?
- Does the area of this graph yield anything significant?

Example Problems: Motion Graphs

Another example...

• Describe the motion of the object in this graph.

- Which graph shows an object moving at the fastest velocity?
- What property of the graph tells you this?

• Translate the motion depicted in the position time graph into a velocity time graph.

Part II: Kinematics in Two Dimensions

Vector: Any quantity with a measurable magnitude and a direction.

- Vectors are often represented with arrows
 - Length of the arrow indicates its magnitude
 - Direction the arrow is pointed represents the direction of the vector quantity.

Example Problem: Resolving Vectors into Components

A projectile is launched at 35 m/s at an angle of 50 degrees.

• First, draw a diagram with an arrow representing the vector quantity.

- Next, resolve the vector into x and y components.
 - X Component: The portion of the vector running along the x axis.
 - Y Component: The portion of the vector running along the y axis.
 - Use trigonometric relationships to do this.

A very important principle to remember: <mark>X and Y components of motion are INDEPENDENT of one another</mark>!

Example Problem: Horizontally Launched Projectile

An object is launched horizontally from the edge of a cliff at 10 m/s. The object takes 4 s to land.

- Think of this in two SEPARATE dimensions
 - Horizontally
 - What is affecting the horizontal motion?
 - Is the horizontal motion constant or accelerated?
 - o Vertical
 - What is affecting the vertical motion?
 - Is the vertical motion constant or accelerated?
- How far did the object fall vertically?

• How far from the base of the cliff did the object land?