Session 6: Circular Motion and Gravitation

Multiple Choice:

1) If an object travels at a constant speed in a circular path, the acceleration of the object is
A) larger in magnitude the smaller the radius of the circle.
B) smaller in magnitude the smaller the radius of the circle.

- IF AN OBJECT CHANGES
C) in the opposite direction of the velocity of the object.
D) in the same direction as the velocity of the object.

$$
a_{c}=\frac{v^{2}}{r}
$$

E) zero.
2) Point P in the figure indicates the position of an object traveling at constant speed clockwise around the circle. Which arrow best represents the direction of the acceleration of the object at point P ?

A)

Acceleration is Always DIRECTED TOWARD TIE CENTER
B)

D)
E)
3) A string is attached to the rear-view mirror of a car. A ball is hanging at the other end of the string. The car is driving around in a circle, at a constant speed. Which of the following lists gives all of the forces directly acting on the ball? Select two answers.

4) A car travels at a steady $40.0 \mathrm{~m} / \mathrm{s}$ around a horizontal curve of radius 200 m . What is the minimum coefficient of static friction between the road and the car's tires that will allow the car to travel at this speed without sliding?
A) 0.662
$\sum F=m a$
B) 1.23
C) 0.736
$f=m \frac{v^{2}}{r}$
$\mu=\frac{v^{2}}{r g}=\frac{(40)^{2}}{200(9.8)}$
(D) 0.810
E) 0.952
$\mu \nLeftarrow h g=\frac{m v^{2}}{r}$

5) A new roller coaster contains a loop-the-loop in which the car and rider are completely upside down. If the radius of the loop is 13.2 m with what minimum speed must the car traverse the loop so that the rider does not fall out while upside down at the top? Assume the rider is not strapped to the car.
A) $12.5 \mathrm{~m} / \mathrm{s}$
Q MIN
speer
B) $11.4 \mathrm{~m} / \mathrm{s}$ $F_{N}=0 \rightarrow$ ONLY
C) $10.1 \mathrm{~m} / \mathrm{s}$ WIGHT MAINTAINS
D) $14.9 \mathrm{~m} / \mathrm{s}$
circular Motion
my Fr

$$
\begin{aligned}
& \sum F=m a \\
& m g=m \frac{v^{2}}{r}
\end{aligned}
$$

6) A baseball is located at the surface of the earth. Which statements about it are correct?

$$
\begin{aligned}
& =m \frac{v}{r} \\
& V=\sqrt{r g}=\sqrt{13.2(9-8)}=11.4 / \mathrm{m} / \mathrm{s}
\end{aligned}
$$

A) The gravitational force on the ball due to the earth is exactly the same as the gravitational force on the earth due to the ball.
B) The ball exerts a greater gravitational force on the earth than the earth exerts on the ball.
C) The earth exerts a much greater gravitational force on the ball than the ball exerts on the earth. 3 RD
D) The gravitational force on the ball is independent of the mass of the earth.
E) The gravitational force on the ball is independent of the mass of the ball.
7) If the mass of the earth and all objects on it were suddenly doubled, but the size remained the same, the acceleration due to gravity at the surface would become
A) 4 times what it now is.
B) 2 times what it now is.
C) $1 / 2$ of what it now is.
D) the same as it now is.

E) $1 / 4$ of what it now is.

$$
=2 \text { grow }
$$

8) Two planets having equal masses are in circular orbit around a star. Planet A has a smaller orbital radius than
planet B. Select two answers.
MOUIN FAster
A) Planet A has more kinetic energy than planet B.
B) Planet A has less kinetic energy than planet B.
C) Planet A has less mechanical energy than planet band planet B.
D) Planet A has less mechanical energy than planet band planet B.

$$
\begin{array}{lrl}
\frac{\text { ORBITAL SPEEd }}{F_{g}}=m a & E_{T} & =-\frac{G M m}{r}+\frac{1}{2} m v^{2} \\
\frac{G M M}{r^{2}} & =\frac{m v^{2}}{r} & E_{T} \\
\frac{G M}{r} & =-\frac{G M r}{r}+\frac{1}{2} \frac{G M m}{r} \\
K E & =\frac{1}{2} m\left(\frac{G M}{r}\right) & E
\end{array}
$$

9) The reason an astronaut in an earth satellite feels weightless is that 9 A) the astronaut is falling.
B) this is a psychological effect associated with rapid motion.
C) the astronaut is beyond the range of the earth's gravity.
D) the astronaut's acceleration is zero.

E) the astronaut is at a point in space where the effects of the moon's gravity and the earth's gravity cancel.
10) Because the earth's orbit is slightly elliptical, the earth actually gets closer to the sun during part of the year. When the earth is closer to the sun its orbital speed is
A) the same as when the earth is farthest away from the sun.
(B) greater than when the earth is farthest away from the sun.
C) less than when the earth is farthest away from the sun.

Cons of $E \Rightarrow A S$
$1 T$ falls closer $1 T$ MOUES FASTER
11) A small planet having a radius of 1000 km exerts a gravitational force of 100 N on an object that is 500 km above its surface. If this object is moved 500 km farther from the planet, the gravitational force on it will be closest

$$
\frac{\text { to }}{\text { A) } 56 \mathrm{~N} .2} \text { B) } 71 \mathrm{~N} . \quad F_{1}=\frac{G M m}{r^{2}}
$$

C) 50 N .
D) 75 N .
E) 25 N .

$$
\begin{gathered}
F_{2}=\frac{G M m}{\left(\frac{4}{3} r\right)^{2}}=\frac{9 G M M}{16}=\frac{9}{16} F_{1} \\
F_{2}=\frac{9}{16}(100)=56 \mathrm{~N}
\end{gathered}
$$

12) Ekapluto is an unknown planet that has two spherical moons in circular orbits. The table summarizes the hypothetical data about the moons. Both moons have low axial spin rates. ($G=6.67 \times 10-11 \mathrm{~N} \cdot \mathrm{~m} 2 / \mathrm{kg} 2$)

	Mass	Radius	Orbital radius	Orbital period
Moon A	$4.0 \times 1020 \mathrm{~kg}$		$2.0 \times 108 \mathrm{~m}$	$4.0 \times 106 \mathrm{~s}$
Moon B	$1.5 \times 1020 \mathrm{~kg}$	$2.0 \times 105 \mathrm{~m}$	$3.0 \times 108 \mathrm{~m}$	

The acceleration due to gravity at the surface of Moon B is
A) $0.20 \mathrm{~m} / \mathrm{s} 2$.
B) $0.25 \mathrm{~m} / \mathrm{s} 2$.
C) $0.30 \mathrm{~m} / \mathrm{s} 2$.
D) $0.15 \mathrm{~m} / \mathrm{s} 2$.
E) $0.10 \mathrm{~m} / \mathrm{s} 2$.

$$
Q=\frac{G M}{r^{2}}=\frac{6.67 \times 10^{-11}\left(1.5 \times 10^{2}\right.}{\left(2 \times 10^{5} \mathrm{~m}\right)^{2}}
$$

Free Response:

1.

A satellite of mass m is in an elliptical orbit around the Earth, which has mass M_{e} and radius R_{e}. The orbit varies from closest approach of a at point A to maximum distance of b from the center of the Earth at point B. At point A, the speed of the satellite is v Assume that the gravitational potential energy $U_{g}=0$ when masses are an infinite distance apart. (a) An astronaut in the satellite feels weightless at point A.
i. Determine the acceleration of the satellite.

$$
a=\frac{G M}{a^{2}}
$$

ii. Explain why the astronaut feels weightless at that point.

THE ASMONAUT HAS A HIGH SIDE WAYS VEROCIM SUCH THAT SHE A CCOLERATES TOWARD THE EARTH, But constant misses, staying iv a binate of Froe fall $\frac{1}{}$ Feelinu weighress.
b. Describe, in a clear, coherent paragraph length response the changes that would occur to the satellite's velocity and total energy if it moved into an orbit with a larger radius.
the Verocin Wound delronse because

But tire total eneruly would ivcuratase Because enernu MUST BE ADD OM T The System to increase orbit.

